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NOMENCLATURE 

T, temperature in the floor; 
i-1, temperature of the heating pipe ; 
To, room temperature ; 
G, Green’s function. 

Greek symbols 

a, thermal convection coefficient; 
i /1 thermal conduction coefficient; 
P3 source function along the boundary. 

1. INTRODUCTION 

FLOOR heating systems have been receiving more attention in 
recent years. Due to the rather large heating surface low 
temperatures can be used. From the architectural point of 
view, floor heating is very attractive as no radiator or similar 
heating devices are to be placed against walls. Floor heating 
also works in the same direction as the natural convection of 
heated air, so that room heating will be performed more 
efficiently. The thermal gradient is directed downwards, 
yielding a better thermal comfort. 

The main advantage of floor heating is undoubtedly the 
low temperature of the circulating liquid due to the large floor 
area. This is very important as one wants to include solar 
energy for space heating as low temperatures can still be used. 
The incorporation ofa heat pump is also more attractive as its 
gain will increase due to the lower temperature required by 
the floor heating installation. 

A disadvantage of floor heating is that the maximum floor 
temperature should be limited (usually 26-29°C). Hence the 
maximum heat flux is limited. For well insulated houses, 
however, this limitation causes no problems. 

In this paper the temperature in a heating floor and the 
thermal flux will be calculated. This will be done numerically 
by a boundary integral equation method, which is extremely 
suited for arbitrary geometries. This has the advantage that a 
change in the geometry (e.g. a variation in the distance 
between the heating coils) can be easily performed. 

2. MODEL 

Consider the structure shown in Fig. 1. The bottom layer is 
assumed to be a perfect insulator. The distance a between the 
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FIG. 1. Cross section of floor heating systems. 

heating pipes can be easily changed around the mean value a 
= 15 cm. The thickness d is also taken to be variable. The 
Boor material is considered to be homogeneous from the 
thermal point of view (i.e. same I.), which is a reasonable 
assumption in actual cases. 

Due to the periodicity of the structure shown on Fig. 1, one 
has only to consider one half period for the solution of the 
problem. The boundary conditions are (Fig. 2): 

VT.u,=O on BC,DE,EF and FA (1) 

I.VT . II, = ac( T - TO) on AB (2) 

T= T, on CD (3) 

u, denotes the normal unity vector; T is the temperature 
distribution in the floor; T, the temperature of the heating 
pipe and T,, the room temperature; a is the thermal 
convection coefficient. The external surface of the heating 
pipe is taken to be isothermal, which certainly will be the case 
when stainless steel is used. 

In order to solve the Laplace equation in the area S (with 
boundary I%) shown on Fig. 2, the following solution is 
proposed : 

T(r) = 
P 

p(r’)G(r 1r’)dC (4) 

as 

where p(r’) is still an unknown function along the boundary 
dS. G(r(r’) is the so-called Green’s function of the Laplace 
equation : 

where 

G(r)r’) = klnlr-dl (5) 

V*G(r(r’) = S(r-r’) (6) 

One can easily verify that the proposed solution (4) will always 
satisfy the Laplace equation. In order to determine the 
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FIG. 2. Half period of the structure shown in Fig. 1. 
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function p, the boundary conditions (l)-(3) are imposed on 
(4). This gives : 

p(r’)C(r (r’)dc’ = T, rsCD 

p(r) 
--+ d 2 . 

p(r’)VC(r Jr’) u, dc’ = 0 

iS 
r E BC, DE, EF and FA 

p(r’)VG(r Ir’) u, de’ ] 
is 

p(r’)G(r /r’)dc’ - T, 
I 

?S 
rcAB. (7) 

Equation (7) is an integral equation in the unknown function 
p. Once p is determined by solving (7) numerically, the 
temperature T(r) and hence all thermal fluxes can be found by 
similar integrations as (4). As integral equation methods have 
been used in various applications [l-4], further details will be 
omitted here. 

For the numerical solution of (7), the integrals appearing in 
the equation should be discretised in a suitable way. The 
integral equation (7) is then replaced by an algebraic set as 
relations like (4) are rewritten by suitable summations. For 
more details one is referred to the literature. 

3. RESULTS 

The integral equation (7) has been solved for some typical 
dimensions a = 15 cm and d = 5 cm. The temperature distri- 
bution along AB was calculated for several values of a/i. (Fig. 
3). Taking some typical values a = 8 W/m’ “C and 3. = 
1.4W/m”C (for concrete), one gets a/i. = 5.7m-r. Hence 
values of l-100 m-r were taken for a/i. in order to cover all 
possible situations. In the graphs shown on Fig. 3 it is clear 
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FIG. 3. Temperature variation at floor level. 

Frc;. 4. Heat gain as a function of the distance a 

that a/j. has a strong influence. One should bear in mind, 
however, that in practical situations a/% is almost constant, so 
that this conclusion has no practical application. It is more 
interesting to note that the temperature distribution along 
AB is almost constant even when the diameter in the pipes 
(2cm) is much smaller than the distance a between them. 
Roughly speaking, Fig. 3 shows that + 70% of the tempera- 
ture drop from T, to T, occurs in the floor for usual values of 
a and i.. 

Figure 4 shows the heat flux per unit length Q/u as a 
function of the distance a. For this graph a/i. was taken to be 
equal to 10 m-t. When a varies from 10 to 20 cm, the results 
of Fig. 4 prove that Q/a is almost constant. Hence, one can 
conclude that for floor heating installations, the distance 
between the pipes is not very critical. 

The influence of the floor thickness d is shown on Fig. 5 for 
two values of a. It is noted that the thickness d has a minor 
influence. By changing d from 5.5 to 7.5 cm (which means that 
the depth of the pipes varies from 2.5 to 4.5 cm) the variation 
of the heat flux is less than lo:?,. 

Figure 6 shows the temperature distribution inside the 
floor. It clearly shows how the thermal energy is conducted 
from the heating pipe towards the ground level. 

4. CONCLUSION 

A numerical method to calculate the temperature distri- 
bution in a floor heating system has been presented. The 
method is based on an integral equation technique which 
enables us to apply the numerical technique to arbitrary 
geometries. From the results obtained in a specific case it was 
found that neither the floor thickness nor the distance 
between the heating pipes are very critical. 
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FK. 5. Heat gain as a function of the height h. 
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FIG. 6. Temperature distribution in the floor. 
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NOMENCLATURE 1. INTRODUCTION 

r, z, I), coordinates of the cylindrical system [m, m, -1; A DETAILED description of the laminar film condensation of 
pure saturated vapour on inclined cylinders has been given by 
Hassan and Jakob [l]. Applying Nusselt’s classical theory of 
film condensation [2], they derived a partial differential 
equation for the film thickness. The numerical solution of this 
equation obtained by a finite difference method, serves as a 
basis for their further conclusions. 

pipe radius [m] ; 
pipe diameter [m] ; 
pipe length [m] ; 
angle between pipe axis and gravity directions; 
film thickness [m] ; 
velocity in z, and $ direction, respectively [m s - ‘I; 
acceleration of free fall [m s -‘I ; 
density of fluid [kg m-"1 ; 
viscosity [N s m-‘3 ; 
thermal conductivity [Wm-’ K-l]; 
latent heat of condensation [J kg- ‘1; 
difference between pipe wail and vapour 
temperature [K) ; 
mass flow rate [kgs-‘1; 
local and mean coefficient of heat transfer 
[Wm-* K-l]; 
constants ; 
dimensionless variables, equation (6); 
variable of integration. 

Reconsidering the problem of laminar film condensation 
on inclined pipes, the present author found that instead of a 
numerical one, an analytic solution of the partial differential 
equation by means of the method of characteristics can be 
given. This interesting result, not found in literature, will be 
described in this note. Some of the results of Hassan and 
Jakob [l] will be verified using the analytic expression of the 
film thickness. 

2. THE BOUNDARY VALUE PROBLEM 

FOR THE FILM THICKNESS 

Referring to Hassan and Jakob [l] for a more complete 


